D³ Resources

1.
Akiyama, K., Nishioka, K., Khan, K. N., Tanaka, Y., Mori, T., Nakaya, T., & Kitawaki, J. (2019). Molecular detection of microbial colonization in cervical mucus of women with and without endometriosis. American Journal of Reproductive Immunology, 82(2), e13147. https://doi.org/10.1111/aji.13147
2.
Ata, B., Yildiz, S., Turkgeldi, E., Brocal, V. P., Dinleyici, E. C., Moya, A., & Urman, B. (2019). The Endobiota Study: Comparison of vaginal, cervical and gut microbiota between women with stage 3/4 endometriosis and healthy controls. Scientific Reports, 9, 2204. https://doi.org/10.1038/s41598-019-39700-6
3.
Bai, Y., Liang, J., Liu, W., Wang, F., & Li, C. (2020). Possible roles of HLA-G regulating immune cells in pregnancy and endometrial diseases via KIR2DL4. Journal of Reproductive Immunology, 142, 103176. https://doi.org/10.1016/j.jri.2020.103176
4.
Bailey, A. P., Hill, A. S., Beste, M. T., Cook, C. D., Sarda, V., Laufer, M. R., Isaacson, K. B., Griffith, L. G., & Missmer, S. A. (2021). Comparison of cytokines in the peritoneal fluid and conditioned medium of adolescents and adults with and without endometriosis. American Journal of Reproductive Immunology, 85(3), e13347. https://doi.org/10.1111/aji.13347
5.
Basta, P., Koper, K., Kazmierczak, W., et al. (2014). The biological role of Treg cells in ectopic endometrium homeostasis. Histology and Histopathology, 29(10), 1217–1233. https://pubmed.ncbi.nlm.nih.gov/24831778/
6.
Bedaiwy, M. A. (2019). Endometrial macrophages, endometriosis, and microbiota: Time to unravel the complexity of the relationship. Fertility and Sterility, 112(6), 1049–1050. https://www.fertstert.org/article/S0015-0282(19)32377-5/fulltext
7.
Barra, F., Scala, C., & Ferrero, S. (2019). Elagolix sodium for the treatment of women with moderate to severe endometriosis-associated pain. Drugs of Today, 55(4), 237–246. https://doi.org/10.1358/dot.2019.55.4.2930713
8.
Bonavina, G., & Taylor, H. S. (2022). Endometriosis-associated infertility: From pathophysiology to tailored treatment. Frontiers in Endocrinology, 13, 1020827. https://doi.org/10.3389/fendo.2022.1020827
9.
Braundmeier-Fleming, A., Russell, N. T., Yang, W., Nas, M. Y., Yaggie, R. E., Berry, M., Bachrach, L., Flury, S. C., Marko, D. S., Bushell, C. B., Welge, M. E., White, B. A., Schaeffer, A. J., & Klumpp, D. J. (2016). Stool-based biomarkers of interstitial cystitis/bladder pain syndrome. Scientific Reports, 6, 26083. https://doi.org/10.1038/srep26083
10.
Brawn, J., Morotti, M., Zondervan, K. T., Becker, C. M., & Vincent, K. (2014). Central changes associated with chronic pelvic pain and endometriosis. Human Reproduction Update, 20(5), 737–747. https://doi.org/10.1093/humupd/dmu025
11.
Brown, J., Crawford, T. J., Datta, S., & Prentice, A (2018). Oral contraceptives for pain associated with endometriosis. Cochrane Database of Systematic Reviews, 2018(5), CD001019. https://doi.org/10.1002/14651858.CD001019.pub3
12.
Capobianco, A., & Rovere-Querini, P. (2013). Endometriosis, a disease of the macrophage. Frontiers in Immunology, 4, 9. https://doi.org/10.3389/fimmu.2013.00009
13.
Chang, C.-Y., Chiang, A.-J., Lai, M.-T., Yan, M.-J., Tseng, C.-C., Lo, L.-C., Wu, C.-H., & Hsu, C.-S. (2022). A more diverse cervical microbiome associates with better clinical outcomes in patients with endometriosis: A pilot study. Biomedicines, 10(1), 174. https://doi.org/10.3390/biomedicines10010174
14.
Chao, X., Liu, Y., Fan, Q., Shi, H., Wang, S., & Lang, J. (2021). The role of the vaginal microbiome in distinguishing female chronic pelvic pain caused by endometriosis/adenomyosis. Annals of Translational Medicine, 9(9), 771. https://doi.org/10.21037/atm-20-4586
15.
Chen, C.-C., Chou, Y.-C., Hsu, C.-Y., Tsai, E.-M., & Er, T.-K. (2022). Transcriptome profiling of eutopic and ectopic endometrial stromal cells in women with endometriosis based on high-throughput sequencing. Biomedicines, 10(10), 2432. https://doi.org/10.3390/biomedicines10102432
16.
Chen, L.-H., Lo, W.-C., Huang, H.-Y., & Wu, H.-M. (2023). A lifelong impact on endometriosis: Pathophysiology and pharmacological treatment. International Journal of Molecular Sciences, 24(8), 7503. https://doi.org/10.3390/ijms24087503
17.
Chen, S., Gu, Z., Zhang, W., Jia, S., Wu, Y., Zheng, P., Dai, Y., & Leng, J. (2020). Microbiome of the lower genital tract in Chinese women with endometriosis by 16s-rRNA sequencing technique: A pilot study. Annals of Translational Medicine, 8(21), 1440. https://atm.amegroups.org/article/view/54025/html
18.
Chen, S., Zhang, J., Huang, C., Lu, W., Liang, Y., & Wan, X. (2012). Expression of the T regulatory cell transcription factor FoxP3 in peri-implantation phase endometrium in infertile women with endometriosis. Reproductive Biology and Endocrinology, 10, 34. https://doi.org/10.1186/1477-7827-10-34
19.
Comptour, A., Chauvet, P., Canis, M., Grémeau, A.-S., Pouly, J.-L., Rabischong, B., et al. (2019). Patient quality of life and symptoms after surgical treatment for endometriosis. Journal of Minimally Invasive Gynecology, 26(4), 717–726. https://doi.org/10.1016/j.jmig.2018.08.005
20.
Conacher, C. G., Naidoo-Blassoples, R. K., Rossouw, D., & Bauer, F. F. (2022). A transcriptomic analysis of higher-order ecological interactions in a eukaryotic model microbial ecosystem. mSphere, 7(6), e00436-22. https://doi.org/10.1128/msphere.00436-22
21.
Critchley, H. O. D., Babayev, E., Bulun, S. E., Clark, S., Garcia-Grau, I., Gregersen, P. K., … Griffith, L. G. (2020). Menstruation: Science and society. American Journal of Obstetrics and Gynecology, 223(5), 624–664. https://doi.org/10.1016/j.ajog.2020.06.004
22.
Darba J, Marsa A. (2022). Economic Implications of Endometriosis: A Review. Pharmacoeconomics, 40(12):1143–1158. https://doi.org/10.1007/s40273-022-01211-0
23.
Della Corte L, et al. (2020). The Burden of Endometriosis on Women's Lifespan: A Narrative Overview on Quality of Life and Psychosocial Wellbeing. Int J Environ Res Public Health, 17(13). https://doi.org/10.3390/ijerph17134683
24.
Donnez J, Dolmans MM. (2021). Endometriosis and Medical Therapy: From Progestogens to Progesterone Resistance to GnRH Antagonists: A Review. J Clin Med, 10(5):1085. https://doi.org/10.3390/jcm10051085
25.
Du H, Taylor HS. (2007). Contribution of bone marrow-derived stem cells to endometrium and endometriosis. Stem Cells, 25(8):2082–2086. https://doi.org/10.1634/stemcells.2006-0828
26.
Emond JP, et al. (2022). Circulating estradiol and its biologically active metabolites in endometriosis and in relation to pain symptoms. Front Endocrinol (Lausanne), 13:1034614. https://doi.org/10.3389/fendo.2022.1034614
27.
Estes SJ, et al. (2020). A Longitudinal Assessment of the Impact of Endometriosis on Patients' Salary Growth and Risk of Leaving the Workforce. Adv Ther, 37(5):2144–2158. https://doi.org/10.1007/s12325-020-01280-7
28.
Fazleabas AT, et al. (2015). Endometriosis-induced changes in regulatory T cells - insights towards developing permanent contraception. Contraception, 92(2):116–119. https://doi.org/10.1016/j.contraception.2015.06.006
29.
Fierer N, Lauber CL, Zhou N, McDonald D, Costello EK, Knight R. (2010). Forensic identification using skin bacterial communities. Proc Natl Acad Sci U S A, 107(14):6477–6481. https://doi.org/10.1073/pnas.1000162107
30.
Fonseca MAS, et al. (2023). Single-cell transcriptomic analysis of endometriosis. Nat Genet, 55(2):255–267. https://doi.org/10.1038/s41588-022-01254-1
31.
Franca PRC, et al (2022). Endometriosis: A Disease with Few Direct Treatment Options. Molecules, 27(13). https://doi.org/10.3390/molecules27134034
32.
Franzosa EA, et al (2019). Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nat Microbiol, 4(2):293–305. https://doi.org/10.1038/s41564-018-0306-4
33.
Huang L, et al. (2011). Gut Microbiota Exceeds Cervical Microbiota for Early Diagnosis of Endometriosis. Front Cell Infect Microbiol, 11:788836. https://doi.org/10.3389/fcimb.2021.788836
34.
Huang X, et al. (2023). Single-cell transcriptome analysis reveals endometrial immune microenvironment in minimal/mild endometriosis. Clin Exp Immunol, https://doi.org/10.1093/cei/uxad029
35.
Human Microbiome Project C. (2012). Structure, function and diversity of the healthy human microbiome. Nature, 486(7402):207–214. https://doi.org/10.1038/nature11234
36.
Izumi G, et al. (2018). Involvement of immune cells in the pathogenesis of endometriosis. J Obstet Gynaecol Res., 44(2):191–198. https://doi.org/10.1111/jog.13559
37.
Jorgensen H, Hill AS, Beste MT, et al. (2012). Peritoneal fluid cytokines related to endometriosis in patients evaluated for infertility. Fertil Steril, 107(5):1191–1199.e2. https://doi.org/10.1016/j.fertnstert.2017.03.013
38.
Jorgensen H, Fedorcsak P, Isaacson K, et al. (2022). Endometrial cytokines in patients with and without endometriosis evaluated for infertility. Fertil Steril, 117(3):629–640. https://doi.org/10.1016/j.fertnstert.2021.11.024
39.
Knights D, Parfrey LW, Zaneveld J, Lozupone C, Knight R (2011). Human-associated microbial signatures: examining their predictive value. Cell Host Microbe, 10(4):292–296. https://pubmed.ncbi.nlm.nih.gov/22018228/
40.
Langille MG, et al. (2013). Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol, 31(9):814–821. https://doi.org/10.1038/nbt.2676
41.
Le N, et al. (2021). Association of microbial dynamics with urinary estrogens and estrogen metabolites in patients with endometriosis. PLoS One, 16(12):e0261362. https://doi.org/10.1371/journal.pone.0261362
42.
Lee SR, et al. (2021). Altered Composition of Microbiota in Women with Ovarian Endometrioma: Microbiome Analyses of Extracellular Vesicles in the Peritoneal Fluid. Int J Mol Sci., 22(9). https://doi.org/10.3390/ijms22094608
43.
Li F, et al. (2018). Hematogenous Dissemination of Mesenchymal Stem Cells from Endometriosis. Stem Cells, 36(6):881–890. https://doi.org/10.1002/stem.2804
44.
Li J, et al. (2018). Endometrium metabolomic profiling reveals potential biomarkers for diagnosis of endometriosis at minimal-mild stages. Reprod Biol Endocrinol, 16(1):42. https://doi.org/10.1186/s12958-018-0360-z
45.
Li Q, et al. (2021). Metabolite profiles in the peritoneal cavity of endometriosis patients and mouse models. Reprod Biomed Online, 43(5):810–819. https://doi.org/10.1016/j.rbmo.2021.06.029
46.
Lu F, et al. (2022). Antibiotic Therapy and Vaginal Microbiota Transplantation Reduce Endometriosis Disease Progression in Female Mice via NF-κB Signaling Pathway. Front Med (Lausanne), 9:831115. https://doi.org/10.3389/fmed.2022.831115
47.
Ma J, et al. (2021). Single-cell transcriptomic analysis of endometriosis provides insights into fibroblast fates and immune cell heterogeneity. Cell Biosci, 11(1):125. https://doi.org/10.1186/s13578-021-00637-x
48.
Maddern J, et al. (2020). Pain in Endometriosis. Front Cell Neurosci, 14:590823. https://doi.org/10.3389/fncel.2020.590823
49.
Maksym RB, et al. (2021). Immunology and Immunotherapy of Endometriosis. J Clin Med., 10(24):5807. https://doi.org/10.3390/jcm10245879
50.
Milewski L, et al. (2011). Increased levels of human neutrophil peptides 1, 2, and 3 in peritoneal fluid of patients with endometriosis: association with neutrophils, T cells and IL-8. J Reprod Immunol, 91(1-2):64–70. https://doi.org/10.1016/j.jri.2011.05.008
51.
Moghaddam MZ, et al. (2022). Immunopathogenesis of endometriosis: An overview of the role of innate and adaptive immune cells and their mediators. Am J Reprod Immunol, 87(5):e13537. https://doi.org/10.1111/aji.13537
52.
Montagna P, et al. (2008). Peritoneal fluid macrophages in endometriosis: correlation between the expression of estrogen receptors and inflammation. Fertil Steril, 90(1):156–164. https://doi.org/10.1016/j.fertnstert.2006.11.200
53.
Murgia F, et al (2021). Metabolic Profile of Patients with Severe Endometriosis: a Prospective Experimental Study. Reprod Sci, 28(3):728–735. https://doi.org/10.1007/s43032-020-00370-9
54.
Muharam R, Amalia T, Pratama G, et al. (2022). Chronic Pelvic Pain in Women with Endometriosis is Associated with Psychiatric Disorder and Quality of Life Deterioration. Int J Womens Health, 14:131–138. https://doi.org/10.2147/ijwh.s345186
55.
Oishi S, et al. (2022). Microbiome analysis in women with endometriosis: Does a microbiome exist in peritoneal fluid and ovarian cystic fluid?. Reprod Med Biol, 21(1):e12441. https://doi.org/10.1002/rmb2.12441
56.
Ortiz CN, et al. (2021). Metabolomics in endometriosis: challenges and perspectives for future studies. Reprod Fertil, 2(2):R35–R50. https://doi.org/10.1530/RAF-20-0047
57.
Passavanti MB, Pota V, Sansone P, Aurilio C, De Nardis L, Pace MC. (2017). Chronic Pelvic Pain: Assessment, Evaluation, and Objectivation. Pain Res Treat, 2017:9472925. https://doi.org/10.1155/2017/9472925
58.
Perrotta AR, Borrelli GM, Martins CO, et al. (2020). The Vaginal Microbiome as a Tool to Predict rASRM Stage of Disease in Endometriosis: a Pilot Study. Reprod Sci, 27(4):1064–1073. https://doi.org/10.1007/s43032-019-00113-5
59.
Porpora MG, et al. (1999). Correlation between endometriosis and pelvic pain. J Am Assoc Gynecol Laparosc, 6(4):429–434. https://doi.org/10.1016/s1074-3804(99)80006-1
60.
Quaas AM, et al. (2015). On-label and off-label drug use in the treatment of endometriosis. Fertil Steril, 103(3):612–625. https://doi.org/10.1016/j.fertnstert.2015.01.006
61.
Riccio L, et al. (2018). Immunology of endometriosis. Best Pract Res Clin Obstet Gynaecol, 50:39–49. https://doi.org/10.1016/j.bpobgyn.2018.01.010
62.
Sampson JA. (1927). Metastatic or Embolic Endometriosis, due to the Menstrual Dissemination of Endometrial Tissue into the Venous Circulation. Am J Pathol, 3(2):93–110. https://pmc.ncbi.nlm.nih.gov/articles/PMC1931779/
63.
Sanfilippo JS, et al. (1986). Endometriosis in association with uterine anomaly. Am J Obstet Gynecol, 154(1):39–43. https://doi.org/10.1016/0002-9378(86)90389-3
64.
Sasamoto N, et al. (2022). Presurgical blood metabolites and risk of postsurgical pelvic pain in young patients with endometriosis. Fertil Steril, 117(6):1235–1245. https://doi.org/10.1016/j.fertnstert.2022.02.012
65.
Shan J, et al. (2021). Gut microbiota imbalance and its correlations with hormone and inflammatory factors in patients with stage 3/4 endometriosis Arch Gynecol Obstet, 304(5):1363–1373. https://doi.org/10.1007/s00404-021-06057-z
66.
Shetty SA, et al. (2022). Dynamic metabolic interactions and trophic roles of human gut microbes identified using a minimal microbiome exhibiting ecological properties. ISME J., 16(9):2144–2159. https://www.nature.com/articles/s41396-022-01255-2
67.
Skegro B, Bjedov S, Mikus M, et al. (2021). Endometriosis, Pain and Mental Health. Psychiatr Danub, 33(Suppl 4):632–636. https://pubmed.ncbi.nlm.nih.gov/34718292/
68.
Soliman AM, et al. (2021). Impact of Endometriosis on Fatigue and Productivity Impairment in a Cross-Sectional Survey of Canadian Women. J Obstet Gynaecol Can, 43(1):10–18. https://doi.org/10.1016/j.jogc.2020.06.022
69.
Strandwitz P. (2018). Neurotransmitter modulation by the gut microbiota. Brain Res, 1693(Pt B):128–133. https://pmc.ncbi.nlm.nih.gov/articles/PMC6005194/
70.
Suszczyk D, et al. (2022). Clinical Value of the PD-1/PD-L1/PD-L2 Pathway in Patients Suffering from Endometriosis. Int J Mol Sci, 23(19). https://doi.org/10.3390/ijms231911607
71.
Svensson A, et al. (2021). Associations Between Endometriosis and Gut Microbiota. Reprod Sci., 28(8):2367–2377. https://doi.org/10.1007/s43032-021-00506-5
72.
Sverrisdottir UA, et al. (2022). Impact of diet on pain perception in women with endometriosis: A systematic review. Eur J Obstet Gynecol Reprod Biol, 271:245–249. https://doi.org/10.1016/j.ejogrb.2022.02.028
73.
Svyllo K, et al. (2003). The involvement of T lymphocytes in the pathogenesis of endometriotic tissues overgrowth in women with endometriosis. Mediators Inflamm, 12(3):131–138. https://doi.org/10.1080/0962935031000134842
74.
Takamura M, et al. (2015). Simultaneous Detection and Evaluation of Four Subsets of CD4+ T Lymphocyte in Lesions and Peripheral Blood in Endometriosis. Am J Reprod Immunol, 74(6):480–486. https://doi.org/10.1111/aji.12426
75.
Taylor HS, et al. (2021). Endometriosis is a chronic systemic disease: clinical challenges and novel innovations. Lancet, 397(10276):839–852. https://doi.org/10.1016/S0140-6736(21)00389-5
76.
Tomkins NE, et al. (2022). Is there a role for small molecule metabolite biomarkers in the development of a diagnostic test for endometriosis?, Syst Biol Reprod Med, 68(2):89–112. https://doi.org/10.1080/19396368.2022.2027045
77.
Tuck CJ, et al. (13 Dec. 2022). Changes in signalling from faecal neuroactive metabolites following dietary modulation of IBS pain. Gut, https://doi.org/10.1136/gutjnl-2022-327260
78.
Vallve-Juanico J, et al. (2019). Macrophages display proinflammatory phenotypes in the eutopic endometrium of women with endometriosis with relevance to an infectious etiology of the disease. Fertil Steril, 112(6):1118–1128. https://doi.org/10.1016/j.fertnstert.2019.08.060
79.
Velho RV, et al. (2021). Neurogenic Inflammation in the Context of Endometriosis—What Do We Know? Int J Mol Sci, 22(23). https://pmc.ncbi.nlm.nih.gov/articles/PMC8658724/
80.
Vich Vila A, et al. (23 Mar. 2023). Faecal metabolome and its determinants in inflammatory bowel disease. Gut, https://doi.org/10.1136/gutjnl-2022-328048
81.
Vigano’ P, et al. (2023). “I’m looking through you”: What consumers and manufacturers need to know about non-invasive diagnostic tests for endometriosis. J Endometriosis Uterine Disord, 2:100031. https://doi.org/10.1016/j.jeud.2023.100031
82.
Voltolini Velho R, et al. (2021). Functional changes of immune cells: signal of immune tolerance of the ectopic lesions in endometriosis? Reprod Biomed Online, 43(2):319–328. https://doi.org/10.1016/j.rbmo.2021.04.012
83.
Wang G, et al. (2009). Rich innervation of deep infiltrating endometriosis. Hum Reprod, 24(4):827–834. https://doi.org/10.1093/humrep/den464
84.
Wang G, et al. (2009). Hyperinnervation in intestinal deep infiltrating endometriosis. J Minim Invasive Gynecol, 16(6):713–719. https://doi.org/10.1016/j.jmig.2009.07.012
85.
Wang G, et al. (2011). Nerve fibers and menstrual cycle in peritoneal endometriosis. Fertil Steril, 95(8):2772–2774. https://doi.org/10.1016/j.fertnstert.2011.01.150
86.
Wang Y, et al. (2021). Does Endometriosis Disturb Mental Health and Quality of Life? A Systematic Review and Meta-Analysis. Gynecol Obstet Invest, 86(4):315–335. https://doi.org/10.1159/000516517
87.
Wei W, et al. (2020). Microbiota composition and distribution along the female reproductive tract of women with endometriosis. Ann Clin Microbiol Antimicrob, 19(1):15. https://doi.org/10.1186/s12941-020-00356-0
88.
Wessels JM, et al. (2021). Endometrial microbiota is more diverse in people with endometriosis than symptomatic controls. Sci Rep., 11(1):18877. https://doi.org/10.1038/s41598-021-98380-3
89.
Yuan W, et al. (2022). The colonized microbiota composition in the peritoneal fluid in women with endometriosis. Arch Gynecol Obstet, 305(6):1573–1580. https://doi.org/10.1007/s00404-021-06338-7
90.
Zhang WX, et al. (2019). Altered profiles of fecal metabolites correlate with visceral hypersensitivity and may contribute to symptom severity of diarrhea-predominant irritable bowel syndrome. World J Gastroenterol, 25(43):6416–6429. https://doi.org/10.3748/wjg.v25.i43.6416
91.
Zhu S, et al. (2023). The heterogeneity of fibrosis and angiogenesis in endometriosis revealed by single-cell RNA-sequencing. Biochim Biophys Acta Mol Basis Dis, 1869(2):166602. https://doi.org/10.1016/j.bbadis.2022.166602
92.
Zou G, et al. (2021). Cell subtypes and immune dysfunction in peritoneal fluid of endometriosis revealed by single-cell RNA-sequencing. Cell Biosci, 11(1):98. https://doi.org/10.1186/s13578-021-00613-5